Box Progressions and Abelian Power Free Words

Nihan Tanısalı (joint work with Sadık Eyidoğan and Haydar Göral)

31 June 2025

Journées Arithmetiques 2025

The Setup

Given balls and boxes both enumerated with positive integers, we consider a sequential allocation of the balls into the boxes.

We fix an $\ell \geq 2$. Proceeding in increasing order of box labels, choose an arbitrary integer r between 1 and ℓ , and assign to each box the next r smallest unassigned balls.

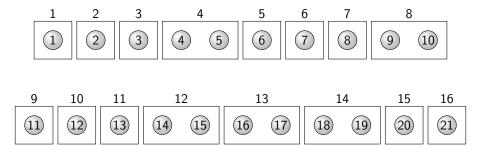
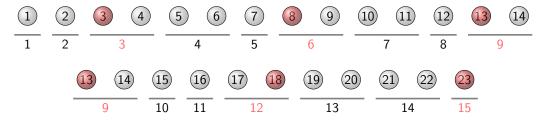


Figure 1: An example of a 2-ball-box distribution

- ▶ We focus on ball and box labels that simultaneously form a k-term arithmetic progression.
- \triangleright We call these balls and boxes k ball box progressions (k-BPs).



Balls: 3, 8, 13, 18, 23 Boxes: 3, 6, 9, 12, 15

Question

- We investigate the minimal number of balls needed to guarantee the existence of ball-box progressions
- ls there such a minimal number for every k?
- \triangleright Or are there infinitely long ball-box distributions with no k ball-box progressions?

- ightharpoonup l=2. First non-trivial case
- ▶ The problem seems related to Ramsey theory at first.

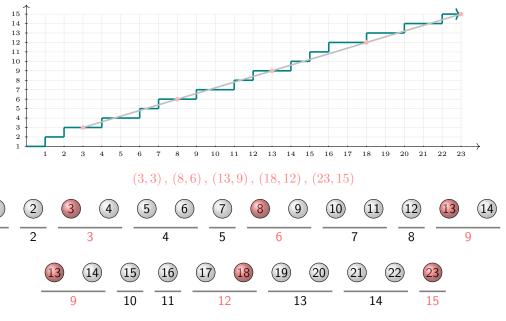
Plan Of The Talk

1 Introduction

2 Formalizing The Question

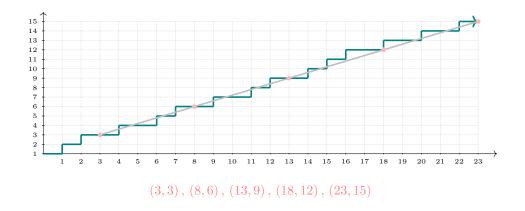
Combinatorics on Words

Equivalent Formalization- I



Balls: 3, 8, 13, 18, 23 Boxes: 3, 6, 9, 12, 15

Equivalent Formalization- I



- Indeed, we are looking for arithmetic progressions in $\mathbb{N} \times \mathbb{N}$ in the graph above.
- ► The analogy with Szemerédi is suggestive

Theorem (Multidimensional Szemerédi Theorem on \mathbb{N}^2)

Let $A \subset \mathbb{N}^2$ be a subset with positive upper density:

$$\overline{d}(A) = \limsup_{N \to \infty} \frac{|A \cap [1, N]^2|}{N^2} > 0.$$

Then, for every $k \in \mathbb{N}$, there exist $x \in \mathbb{N}^2$ and nonzero $v \in \mathbb{N}^2$ such that

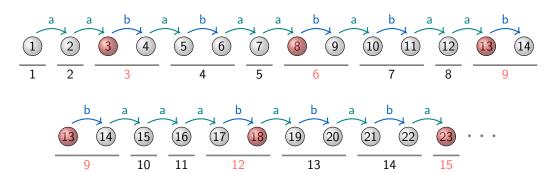
$$\{x, x+v, x+2v, \dots, x+(k-1)v\} \subset A.$$

- ▶ The density of integer points on the graph is $O\left(\frac{1}{N}\right)$. This is not a dense subset.
- Multidimensional Szemerédi is not applicable, another formalization?

Equivalent Formalization- II

We can encode this sequence into a word over $\Sigma := \{a, b\}$ via the following rules:

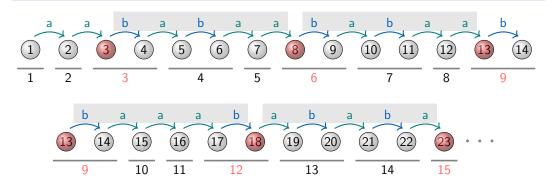
- ightharpoonup an a if the box changes
- ▶ a *b* if the same box



Equivalent Formalization- II

We can encode this sequence into a word over $\Sigma := \{a, b\}$ via the following rules:

- ightharpoonup an a if the box changes
- \triangleright a b if the same box



Combinatorics on Words

Repetition

A k repetition is composed of k consecutive equal factors. Examples:

- ► aaaa
- ► <u>aaabb</u> <u>aaabb</u> <u>aaabb</u> <u>aaabb</u>

Abelian Powe

A k abelian power is composed of k consecutive factors that are anagrams of each other. Examples:

- ► aaaa
- ► <u>aaabb</u> <u>aaabb</u> <u>aaabb</u> <u>aaabb</u>
- angle, angel
- ▶ <u>babaa babaa baaab ababa</u>

Ball Box Progressions and Abelian Powers

Proposition

Let $k \geq 2$ be a positive integer. Let $\mathcal D$ a ball-box distribution, the corresponding word $w_{\mathcal D}$ is abelian (k-1)-power free if and only if there is no k ball-box progression in $\mathcal D$.

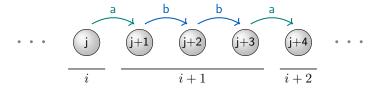
being k ball-box progression free \longleftrightarrow being k-1 abelian power free

Some previous work on abelian power-free words:

- F. Dekking, Strongly non-repetitive sequences and progression-free sets, Journal of Combinatorial Theory 27 (1979)
- A. Carpi, On abelian power-free morphisms, Internat. J. Algebra Comput. 3 (1993) 151–167.

Our Constraint On The Word

at most 2 balls in a box \longleftrightarrow no bb as a factor



1 Introduction

Pormalizing The Question

3 Combinatorics on Words

Some Notions on Words-I

- Let $\Sigma = \{a, b\}$ be an alphabet. An element of Σ^* is called a word.
- ▶ The empty word is denoted by ϵ .
- Given a word

$$v = uw$$
,

u is called a prefix.

We set

$$\operatorname{Pref}(v) = \{u \in \Sigma^* : u \text{ is a prefix of } v\}.$$

ightharpoonup The Parikh vector of v denoted by

$$\psi(v) = (v_1, v_2) \in \mathbb{N}^{|\Sigma|}$$

where v_1 and v_2 is the number of appearances of a and b respectively.

Some Notions on Words-II

► A morphism is a map

$$h: \Sigma^* \to \Sigma^*$$

 $h(vw) \mapsto h(v)h(w).$

► The frequency matrix of a morphism is

$$\begin{pmatrix} \psi(h(a)) \\ \psi(h(b)) \end{pmatrix}.$$

Finally, we define

$$\operatorname{Pref}(h) := \bigcup_{\sigma \in \Sigma} \operatorname{Pref}(h(\sigma)).$$

▶ h is called abelian k-power-free if, for every abelian k-power free word $w \in \Sigma^*$, the image h(w) is also ableian k-power free.

Example

 $lackbox{ Consider the morphism } h:\Sigma^* o\Sigma^* \mbox{ given by }$

$$h(a) = aaaba$$
$$h(b) = bab.$$

The frequency matrix of h is

$$M = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix}$$

The determinant of the matrix is 7.

$$\operatorname{Pref}(h) = \{\epsilon, a, aa, aaa, aaab, b, ba\}$$

Questior

ls h a k abelian power free morphism for some k?

Some Observation on h

▶ Define the group generated by $\psi(h(a)) = (4,1)$ and $\psi(h(b)) = (1,2)$.

$$G_h = \langle \psi(h(\sigma)) : \sigma \in \Sigma \rangle \subseteq \mathbb{Z}^{\Sigma}.$$

$$\operatorname{Pref}(h) = \{ \epsilon, a, aa, aaa, aaab, b, ba \}$$

$$\mathcal{P} := \psi(\operatorname{Pref}(h)) = \{ (0, 0), (1, 0), (2, 0), (3, 0), (3, 1), (0, 1), (1, 1) \}.$$

▶ We observe that (0,1) and (1,2) are in the same coset in \mathbb{Z}^{Σ}/G_h :

$$(3,0) - (0,1) = (4,1) - (1,2).$$

$$\overline{\mathcal{P}} = \{ \overline{(0,0)}, \overline{(1,0)}, \overline{(2,0)}, \overline{(3,0)}, \overline{(1,1)}, \overline{(3,1)} \}.$$

Arithmetic Rank (a-rk)

The arithmetic rank of a set A is defined as

 $\operatorname{a-rk}(A) := \text{length of the longest arithmetic progression in } A$

ightharpoonup Example: $\operatorname{a-rk}(\psi(\operatorname{Pref}(h))) = 6$

Theorem (Eyidoğan, Göral, T.)

Given an integer $n \geq 4$, an alphabet Σ of size at least 2 and a morphism

$$h: \Sigma^* \to \Sigma^*$$
.

Let

$$G_h = \langle \psi(h(\sigma)) : \sigma \in \Sigma \rangle \subseteq \mathbb{Z}^{\Sigma}.$$

Finally we set

$$\mathcal{P}=\psi(\mathrm{Pref}\,(h)) \text{ and } \overline{\mathcal{P}}=\{\overline{v}:v\in\mathcal{P}\}.$$

Suppose the following conditions are satisfied:

- 1. The frequency matrix of h is non-singular,
- 2. $\operatorname{a-rk}(\overline{\mathcal{P}}) \leq n$,
- 3. For $v \in \mathcal{P} \setminus (\psi(h(\Sigma)) \cup \{0\})$, the equivalence class of v contains at most 2 elements. Moreover if v and w are in the same class, then

$$v - w = \psi(h(p)) - \psi(h(q))$$

for some $p,q \in \Sigma$ where $v \in \psi(\operatorname{Pref}(h(p)))$ and $w \in \psi(\operatorname{Pref}(h(q)))$.

Then, h is an abelian n-power free morphism.

Corollary

There exists an infinite word Ω over a binary alphabet $\Sigma = \{a, b\}$ such that

- $\blacktriangleright bb$ is not a factor of Ω (there are no two consecutive b's in Ω),
- $ightharpoonup \Omega$ is abelian 6-power free.
- ▶ We consider the morphism

$$h(a) = aaaba \ h(b) = bab.$$
 with non-singular frequency matrix $\begin{pmatrix} 4 & 1 \ 1 & 2 \end{pmatrix}$.

- $ightharpoonspice a-rk(\overline{\mathcal{P}})=6$
- ▶ We have only two elements in the same equivalence class:

$$(3,0) - (0,1) = (4,1) - (1,2).$$

and

$$(1,2) - (0,1) = (4,1) - (3,0) = \psi(h(a)) - \psi(h(b)).$$

In h is an abelian power-free morphism, hence $\Omega:=h^\omega(a)$ is an infinite abelian 6 power-free word.

Answer

- $ightharpoonup \Omega$ admits no 6 abelian powers
- Among the ball-box distributions where we allow at most 2 balls in a box, there is an infinitely long ball-box distribution corresponding to Ω which admits no 7 ball box progressions.

