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McEliece is a public key encryption scheme introduced in 1978.

The security of McEliece relies on hard problems in coding theory




What is a Code?

» A linear code C of length n is a IF;-vector subspace of Fy' endowed with a metric

Generator Matrix of a Code

> A matrix G whose rows generate C



Given a code C, let ¢ be an integer, and 7 € Iy,
Decoding Problem: To find ¢ € C and & with wy (€) = ¢ such that

F=Cc+¢€

Decoding is a hard problem for almost all codes C!




Private Key: An efficient decoding algorithm for a code C
Public Key: A pair (G,t) where G is a generator of the code C and ¢ is an integer
Encryption: To encrypt m € Ff, calculate

where wy(€) =t
Decryption: Getting back m

For security, the public key must mask the structure of the private key.

There are families of codes for which
there exists an efficient decoding algorithm

the public key masks the structure of the private key



Our Contribution

Beelen, Bossert, Puchinger, Rosenkilde, 2018

Proposed Twisted Generalized Reed-Solomon (TGRS) codes to instantiate the McEliece
Encryption scheme

Our Contribution

We recovered the private key from the public key



Plan of the Talk

9 Security Of McEliece



Niederreiter proposed using Generalised Reed-Solomon (GRS) codes in McEliece
Encryption Scheme (1986)

Let @ = (aq, ..., ay) be an n—tuple of pairwise distinct elements of F, and ¢’ € (IF, \ {0})".
Generalized Reed-Solomon code of dimension & is defined as

GRSy (@, 9) := {(vif(an), -, onflan)) | f € Folal<r}-

Private Key: (a1,...,a;,) Public Key: A random generator matrix of GRSy (&, ¥)

Question: Are they secure?



Question: Given a code C, can we decide if it is Generalized Reed-Solomon?



The Schur product of a = (ay,...,an), 8= (B1,...,8,) € Fy is defined as

axfi= (alﬂlv s 704an)

Given two linear codes A, B C IFZL, the Schur product
AxB:=({axpB|aec Aand g € B})

For a linear code C, the Schur product C xC (or C?) is called the square of C



In cryptographic applications, one is interested in the dimension of C' x C'.

g1 g1 * g1
G2 g1 * Go
C~G= |33 CxC ~ | 1%73

Gk Gk * Gk
Trivial relations: g; x §; = §; * gi.

Number of different rows: (g) + k
For a random generator matrix the trivial relations are the only ones!



In cryptographic applications, one is interested in the dimension of C' x C'.

g1 g1 * g1
G2 g1 * Go
C~G= |33 CxC ~ | 1%73

G Tk * Gk

Trivial relations: g; x §; = §; * gi.
Number of different rows: (g) +k

For a random generator matrix the trivial relations are the only ones!

For almost all codes C of dimension k, we have

dim(C *C) = min <n @ + k)



Consider the Reed-Solomon matrix
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X ov Qa7
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mk—l allc—l

There are nontrivial relations

(1,1,1,...,1) % (af, 05,04, ...,ak) =

Number of different rows: 2k — 1

We have a distinguisher if k£ < n/2:
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RSk(a) * RSk(a) = RSQkfl(a)
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~ 2k - 1) <min (n, 2D 4 k).
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What About k& > n/2? Answer: Shortening
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Given a code C' C Fy! and a subset I = {i1,...,47/} C [n], the shortening of C at I is

Short(C, I) := {(z1,...,2n) : (z1,...,2,) € C such that Vi € I, z; = 0}.

1 * * % * % ok k% gi

0 1 % =% * % ok k% Jo

0 0 1 =« *  x ok k% g3

C~G= 0 0 0 1 * ok ok kX =1 s

0 0 0 O 1 *x * x % Tk

0 1 =« * % G2

0 1 * ok g3

Short(C, I) ~ Gy = 00 0 1 -+ x % % % % | _|gs
0 0 0 O 1 % % % x% gk

Short(C, I) can be seen as a k — 1 dimensional code in F; !



Reed-Solomon codes are evaluation codes
RS (&) = evo (Fylx]<k)
The shortening of RS () at 1st coordinate can be seen as
Short(RSk(a), I) = eva({f € Fy[z]<k : (x —ar) | f})
= eva((z — a1)Fglz]<r-1)
The shortened Reed-Solomon codes are generalized Reed-Solomon codes of lower dimension:

dimension of the RS code: k¥ — k —1
dimension of the ambient space: n —n — 1




Consider the Schur square:
dim(Short(RSg (), I) * Short(RSy(«), I)) < 2(k—1) — 1 =2k — 3.

If 2k — 3 < n — 1, this provides a distinguisher
Else, we shorten more till 2(k — |I]) =1 <n — |I]!

The shortened Reed-Solomon codes are generalized Reed-Solomon codes of lower dimension:

dimension of the RS code: k — &k —1
dimension of the ambient space: n —n — 1
dimension of the Schur square: 2k —1 — 2(k—1) — 1




Consider the Schur square:
dim(Short(RSg (), I) * Short(RSy(«), I)) < 2(k—1) — 1 =2k — 3.

If 2k — 3 < n — 1, this provides a distinguisher
Else, we shorten more till 2(k — |I]) =1 <n — |I]!

The shortened Reed-Solomon codes are generalized Reed-Solomon codes of lower dimension:

dimension of the RS code: &k — k — 1
dimension of the ambient space: n —n — 1
dimension of the Schur square: 2k —1 —2(k—1) -1

The Schur square distinguisher for GRS codes can be transformed into an attack




9 McEliece Instantiated with Twisted Generalized Reed Solomon Codes



Proposition of TGRS codes:

Beelen, Bossert, Puchinger, Rosenkilde proposed Twisted Generalized Reed-Solomon
(TGRS) codes to instantiate McEliece encryption scheme 2018

They claimed that TGRS codes can resist Schur product based attacks

By Lavauzelle and Renner for a weaker model

We proved that TGRS codes cannot resist Schur product based attacks

We provided an attack for a larger set of variables than the previous ond



Generator matrix of Reed-Solomon code RSy ()

1 1 1
o (6] a2
=y

k—1 k‘—l —1



Generator matrix of Reed-Solomon code RSy ()

1 1 1 1
o (6] a2 a3
A%
%
k—1 k-1 k—1 k—1
T (¢ %} Qy Qg

Generator matrix of 1-Twisted Reed-Solomon code

1 1 1
T a1 Q2
: ev . .
1 - 1 9 -
P k1t n/{ + (1,]]‘ +i (1,-2' + ni‘, +t (\,;/;" + (1,f;
k—1 k—1 k—1
T oy Qs

as

14t

Qn



We set the following notation

M= Lz, .. 2. . . 2" CF,la]es
P=M+(c) CF,z]cr+(c) where c=zh 4 "1+

TRS is an evaluation code:
TRSg (e, h,t) = ev(P)

Observation:
dim(TRSk (e, h, t) x TRSy (v, h, t)) < dim P?

where

P2={fxglfgeP})




—

M=z, xh 2" CF, ]y
P =M+ (c) CF,z]<r+ (c) where c=z" 4o~ 1T

dim(TRSg (e, ) * TRS,(a, h)) < dim P? < 3k — 1.

dim(P?) = dim(M? + eM + (¢2))
< dim( /\\/lj ) + dim(eM) + dim((c®))
CFqlz]<2r—1

=Q2k-1)+(k-1)+1=3k-1

If k < n/3 —1, provides a distinguisher.
What about larger k7




mRspen) —P [ | | [ [T ] []]] []

o1 2 .- h k-1 k—1+1

shortening at I

short(TRSk (e, b)) — Py, | |
01 2 (h—|I]) (k—1|I])—1 (k—1I])—1+t

All the degrees reduce by |I|

M=z, .20 . 2" ) CF o)<
P =M+ (c) CFx]<k + (c) where c =zl 4 xF=1+1

I is the set of coordinates of shortening, pr(z) =[], ¢;(z — i)

My, @y ={f(&) e M:pr(x) [ f(2)} € pr(@)Fqlz]p—n-

codim=1

Py, (x) = Mp,(z) + (maybe another polynomial)



Let C be an 1-TRS code of dimension k. Let I C [n] such that |I| < k and dimCy =k — |I|.
Then,
dim(Short(C, I') x Short(C,I)) < 3(k — |I]) — 1

How do the variables change?

dim TRSk (e, h,t) = k — dim TRSk (e, h, t); = k — |I|
dim TRS (a, h, t)? < 3k — 1 — dim(TRSk(a, h, t)? < 3(k — |1])) — 1

the dimension of
the ambient space: ¥ —n— |I|

For large enough |I| as 3(k — |I|) — 1 < n — |I|, we will have a distinguisher




e The Attack



Key idea: The Schur square of a 1-TRS code is low-dimensional, giving a distinguisher which we turn
into a key-recovery method.

Public parameters: a generator matrix of the TRS(«, h,t) code

Secret parameters: evaluation point «, the position of the hook h and the twist ¢.



Steps of the Key-Recovery

» Determine shortening length so that the square code is not full dimensional: Set
|7| such that 3(k — |I]) —1 <n — |I|

b Efficiency: non-intersecting positions: Shorten the code in different positions
{Il,IQ,.. .,Il} with Iz ﬁIj = (Z)

» Recover GRS codes underlying the shortened TGRS codes: For each
Short(TRSg (e, v), I;) we recover the underlying GRS code

» Take the union to find the underlying RS code of the TGRS code



Steps of the Key-Recovery

» Determine shortening length so that the square code is not full dimensional: Set
|7| such that 3(k — |I]) —1 <n — |I|

b Efficiency: non-intersecting positions: Shorten the code in different positions
{Il,IQ,.. .,Il} with Iz ﬁIj = (Z)

» Recover GRS codes underlying the shortened TGRS codes: For each
Short(TRSg (e, v), I;) we recover the underlying GRS code

» Take the union to find the underlying RS code of the TGRS code

LIITTTTITTITITT]
012 - h k-1 k—1+1t
Jortening at I (When needed)
LITTTTTT]
01 2 (h—JI) (k—1]1])—1 (k=1I)—1+t¢

recovering
| | | | | | | | | Reed-Solomon

012 -1 -1




A Closer Look

Simplest case:
» dim(TRSk (e, h)?) < n/3 — no need to shorten
bk <t<n-—2k— we will see why

TRSp) L L I T T T T 1] L]

This Work:
recovering the under-
lying monomial code

Already Done:
recovering the un-
derlying RS code

Rsp() LL LT TTT1]

Couvreur, Alain, Philippe Gaborit, Valérie Gauthier-Umaiia, Ayoub Otmani, and
Jean-Pierre Tillich (2014). “Distinguisher-based attacks on public-key cryptosystems using
Reed-Solomon codes”.



Recovering The Monomial Subcode

TRS(a, h) 2™ ev (M)

recover

> Input: A basis B of

TRSk(a, h) =eva ({1, z,... ,a/vz, I L (L R )
» Qutput: A basis B’ of the underlying monomial code

eVa (M) = eva((La,..., 2., a" 1))



Recall that

The distinguisher in the previous section is
dim(TRSk(«, h) * TRSk (e, b)) < 3k — 1.
evy (M) is a large subcode of TRSy (v, h):

TRSk(a, h) = evga (M) + {(evy(c))

For any three elements vy, vy,v3 € TRSy (. h)
dim ({(v1,v9,v3) * TRSk (e, h)) <3k —1
For any three elements vy, v9,v3 € ev, (M), we have

dim((v1, va, v3) * TRSk (e, b)) < dim (<1)1,U2, v3) * eve (M + (c)) )
= dim({vy, va, v3) xeve (M) )+ 3
. 2
<dim M +3 < 2k + 2.

CFqylz]2k—1



Algorithm
» Randomly choose (v1,v2,v3) € TRSk (o, h) till

dim ((v1,v2,v3) * TRSk (v, h)) < 2k + 2
» Randomly choose vy € TRSy(«, h) till
dim ((v1,v2,v4) * TRSk (v, h)) < 2k + 2

> Repeat: vs,vg,...,Vk_1.

» The output is
<1)1, o0 0 ,Uk_1>



The question is whether the algorithm successfully recovers ev,, (M) or not.

evy (M) 2 (V1,0 VE—1)

We give a lower bound for the success probability.

The rest of the talk: introducing the techniques & tools



Randomly choose (v1,v2,v3) € TRSk(a, h) till
dim((v1, va, v3) * TRSk(c, b)) < 2k +2 (%)
Randomly choose vy € TRSk (e, h) till
dim((vy, va, v4) * TRS(a, h)) < 2k + 2

Repeat: vs,vg,...,Vp_1

Success When (%) holds and (v1,vs,v3) € evg (M)?
Failure When () holds and (vy, va,v3) € TRSy (v, h)* \ eva(M)?



Test (+) <= dim((v1,v2,v3) * TRSk(c, h)) <2k +2 (%)

Success When (%) holds and (v1,v2,v3) € evg (M)?
Failure When (%) holds and (v, vs,v3) € TRS,(cr, h)*\ eva (M)?

evg(M)? TEST -
TEST +

TEST +

Partition of TRSk(a, h)3



Test (+) <= dim((v1,v2,v3) * TRSk(c, h)) <2k +2 (%)

Success When (%) holds and (v1,v2,v3) € evg (M)?
Failure When () holds and (vy, va, v3) € TRSy (v, h)? \ eva(M)?

| —+True Negative

evy(M)3 TEST - /

TEST +

el TEST +

/

True Positive o False Positive
Partition of TRSk(a, h)3



| > True Negative
eva(M)? TEST - )

TEST +
L TEST +

True Positive False Positive

Partition of TRSy(a, h)3

The precision of the test is

True Positives

True Positives + False Positives

Known: the number of True Positives. ev, (M) C TRSi(a, k) is a codimension 1
subspace.

Aim: to show the precision is high. How?

Answer: By showing True Negatives is a large subset.



Test (+) <= dim ((v1,v2,v3) * TRSy(a, b)) < 2k + 2

(v1,v2,v3) € TRSk(a, h,)3 \ eva(./\/l)3 and

T Negati S
rue ega Ive {dlm (<U17 V2, ’l}3> * TR’Sk(a’ h)) > 2k + 2



eve(M) — M = (17x,...7ﬁ,...,azk_1> C Fylx]<k

TRSk(c,h) — P =M+ (c) CFy[z]< + (c) where ¢ = gl 4 2F= 1+

vl_>f1($): b0+b1$+...+bk71$k’—l
vy — fo(x) i=co+ 1z 4+ ep1z” !

vy — f3(2) ;= a0+ a1z 4+ -4 ap_ 17" Fap1pe (@ 12", ak—14e £0,

As k<t <n-—2k
dim(f1P + foP + f3P) > dim(f1M + foM + f3M) + 3
= dim (fyM + foM) +dim (fsM)
—_—— ——

the degrees are the degrees are
0,...,.2k—2 (k—1+t),...,2(k—1)+t

= dim(fiM + foM) + (k — 1)

— dim(fyM + faM) > k+3 = dim(fiP + foP + fsP) > 2k + 2



True Negatives vy, va,v3 ~ triplets such that dim(f; M + faoM) >k +3

M codi%n:l Fq [z]<k
dlm(f1M + ng) > dim(leq[ac]<k + fZFq[m]<k) -2
A bit of linear algebra (rank of Sylvester type matrices)

dim(f1Fy[z]<r + folFq[x]<k) = k + max{deg f1,deg fo} —



True Negatives 1 d

Let f and g be randomly chosen from the set of polynomials in Fj,[x] of degree s and u
respectively, where s and u are not both zero. Then the probability of f and g being coprime is

1-—1
e

In finite setting probability — counting

A repeated use of this theorem for distinct values of s, u gives a lower bound for the
number of pairs f1, fo such that

dim(f1 Fylz]<k + foFylz]<k) = k + max{deg fi, deg fo} — deg(gcd(f1, f2))
Using this lower bound we get

(triples satisfying dim(fiP + foP + fsP) > 2k +2) — 1
(all triples in P3\ M?3) - q°




| > True Negative

eva(M)3 TEST - /

TEST +
- TEST +

True Positive False Positive

Partition of TRSy(a, h)3

The ratio of True Positives=1/¢?, The ratio of False Positives< 1/¢°
The precision of the test is

True Positives 1

— >1
True Positives + False Positives — q>?



Algorithm
> Randomly choose (v1, v2,v3) € TRSk(o, h) till

dim((v1, v2, v3) * TRSk(a, h)) <2k +2 (%)
» Randomly choose v4 € TRS; (e, h) till
dim((v1,v2,va) * TRSk(a, h)) < 2k 42 (%)
» Repeat: vs,v6,...,Vk—1
TRS: (o, h) 20 evq (M)

> The precision of (x) is higher than 1 — ;15, the precision of (k) is even higher

> As k < g, the total precision is > 1 — %.



Problem: Shortening of TRS codes are not TGRS

Let a € F} be a sequence of distinct elements and v € (F)". An /—quasi-GRS (/—qGRS)
code is defined as a code C such that

C=Co@C,

where Cy is a subcode of codimension ¢ of GRSy («,v) and C; has dimension ¢ and satisfies
C1 NGRSk (a,v) = 0.

TGRS codes are g-GRS
g-GRS codes are closed under shortening

short(TRSg(a, h)) 2lgorithm, short(evey (M))

recover




ke | [V2n,n—14]
| [17,n—k—16]
h | #£1,k—2

~+

The range of parameters for provable attacks in the case of single twist

We discuss the attack for TRS codes; TGRS follows similarly via a column multiplier
— g * TRSi(a, h).



Codes

* Schur product
* Wild
* Distinguisher: C?

evaluation map

Polynomial Spaces
* Polynomial product

x Controlled: Degrees

* P2

Problem:
¥ evy 1 P2 — C? is not always 1-1

Solution:
* Shortening
x The notion of g-GRS



The codes used to instantiate the McEliece encryption scheme must be chosen carefully.

Families of codes considered secure: Goppa codes, MDPC codes, and certain variations
of (u| u + v) codes.

Variants of GRS codes are generally vulnerable to Schur square-based attacks.



The codes used to instantiate the McEliece encryption scheme must be chosen carefully.

Families of codes considered secure: Goppa codes, MDPC codes, and certain variations
of (u| u + v) codes.

Variants of GRS codes are generally vulnerable to Schur square-based attacks.

Thank You For Your Attention!



@ “How to mask the structure of codes for a
cryptographic use”.

“Squares of Random Linear Codes”.

B

“Distinguisher-based attacks on public-key cryptosystems using
Reed—-Solomon codes”.
B “On the
structure of the Schur squares of Twisted Generalized Reed-Solomon codes and application
to cryptanalysis”.

[ “Cryptanalysis of a system based on
twisted Reed—Solomon codes”.
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